
Author: Sven Berglund, 2025
sven@certerion.com

Download at: https://certerion.com/assets/pdf/web-app-scanning-in-vuln-mgmt-program.pdf
Version: v1.1 (2025-07-03)

Incorporating Web Application Scanning into a
Vulnerability Management Program: An Operational Guide

Positioning DAST within the Enterprise Security Toolkit

Introduction

This document provides guiding principles for integrating a Dynamic Application Security Testing tool
(DAST)1 into routine Enterprise Vulnerability Management2 processes. The scope and responsibilities
of teams constituting the Vulnerability Management function are frequently subject to discussion and
adjustment. Each organization must tailor its approach to implementation, tool selection (such as
whether or not to use DAST), and resource allocation based on aligned and adjacent functions, budget
constraints, and strategic priorities.

For the purposes of this document, Web Application Scanning will refer specifically to the
comprehensive analysis of live HTTP application interfaces, as distinct from the static analysis of
source code or configuration files (SCA3). While the terms “Web Application Scanning” and “DAST”
may be used interchangeably herein, we primarily let DAST denote the toolset or capability, whereas
Web Application Scanning refers to the operational practice.

This review examines the role of active Web Application Scanning within the broader context of
vulnerability assessment, highlighting the introduction and understanding of features such as web
fuzzing, application crawling, DOM state manipulation, and automated web application authentication.

Although some references to Tenable’s4 solutions will appear throughout, the ambition is to let the
discussion remain primarily vendor-neutral.

© 2025 Sven Berglund. All rights reserved.
If you wish to republish this material, please provide attribution and a referral link to the original article at https://certerion.com.

1 DAST stands for Dynamic Application Security Testing. It is a security testing methodology that analyzes applications (typically web applications)
while they are running, from an external perspective to identify vulnerabilities. See e.g.
https://owasp.org/www-project-devsecops-guideline/latest/02b-Dynamic-Application-Security-Testing

2 For discussion around the Vulnerability Management function, see Appendix E: Expanding on Common functions and perspectives on Web
Application Scanning

3 SCA stands for Software Composition Analysis. It is an automated process that identifies all open source and third-party components within a
codebase, typically analyzing the code and configuration at rest directly from it’s repository checking them for known security vulnerabilities and
license compliance issues

4 https://www.tenable.com/products

https://certerion.com/assets/pdf/web-app-scanning-in-vuln-mgmt-program.pdf
https://certerion.com/
https://www.tenable.com/products
https://owasp.org/www-project-devsecops-guideline/latest/02b-Dynamic-Application-Security-Testing

Table of Contents
Incorporating Web Application Scanning into a Vulnerability Management Program: An Operational
Guide..1

Introduction... 1
Dynamic Web Application Scanning – The duty of whom?...3
Dynamic Web Application Scanning vs. General Network based Vulnerability Scanning..................4
Common program considerations... 6

Operational aspects to resolve..6
Application prioritization... 7
Scan Depth and caution.. 10
Large environment application discovery...11

Appendices...12
A. Schema for classification: Scan depth and caution..12
B. Schema for classification: Web Application Customization Spectrum...15
C. Expanding on Web App Scanning vs. Network Vulnerability scanning..17

 C.1. Targeting specific apps by URL...17
 C.2. DOM interactions and DOM aware scanning..18
C.3. Active Probing techniques.. 19
C.4. Credentialed scanning with a DAST tool...21
Toolkit rather than ascertained feature support..22
 C.5. Ideal Scan cycle implementation may differ..23
C.6. Specialized Focus: Vast framework and library recognition..24

D: Unpacking Active vs. Passive probing..25
E: Expanding on Common functions and perspectives on Web Application Scanning.......................27

End notes..28

Dynamic Web Application Scanning – The duty of whom?

Web Application Scanning (DAST) is typically performed by some or all of the 3 functions:

• Vulnerability Management
• Development team (or SDLC aligned QA function)
• External Auditor or pentester

The boundaries between the practices of these functions can overlap significantly and Web Application
Scanning is one such area of overlap. Compliance requirements can become a key driver for
implementing Web Application Testing in all of the 3 functionsi.
In this document, as the title indicates, we focus on incorporation of Web Application Security
Assessment of the DAST type into the Vulnerability Management function. We try to address typical
questions that tend to arise in the implementation.

Drill down: See Appendix: E: Expanding on Common functions and perspectives on Web

Application Scanning for more discussion around the 3 different functions/perspectives depicted in
the diagram.

Figure 1: Three perspectives on web application security testing, with the main functions
owning these perspectives. Operational perspective (Vulnerability Management function),
Developmental perspective (Dev/QA team function), and Independent verification
perspective (External Audit function or Pen Testing function).

Dynamic Web Application Scanning vs. General Network based
Vulnerability Scanning

Since running generalized or multi-purpose vulnerability scans of IT-Assets over the network (using
tools such as Nessus5) often constitutes the backbone of a Vulnerability Management program, the
introduction of a DAST1 tool can sometimes cause confusion or be mistakenly deemed as a redundant
assessment method.

Examples of [broad-scope] Enterprise Vulnerability Scanners

Nessus (Tenable), QualysGuard (Qualys), InsightVM (Rapid7), OpenVAS, Nexpose (Rapid7),
Languard (GFI)

Examples of DAST tools/platforms

Tenable Web App Scanning (Tenable), OWASP ZAP, Burp Suite (PortSwigger), Invicti DAST
(Invicti), Acunetix (Invicti), Veracode Dynamic Analysis (Veracode), InsightAppSec (Rapid7)

Disclaimer: When compiling this document Tenable’s implementations have been used as points-of-references.
The exact feature separation between DAST and more general-purpose scanning might not be applicable in exactly the
same way in one-to-one comparisons between all of these tools.

The tools to conduct DAST versus General-purpose Vulnerability Scanning can sometimes be
architecturally very similar6 but they provide different capabilities. These are 6 common characteristics
that highlight the contribution of a DAST tool in the Enterprise Security Toolkit:

➢ 1. It’s Targeting specific apps by URL

Where the typical broad-spectrum enterprise vulnerability scanning focuses on entities like IP, the
Host or the Asset, a DAST tool will target URLs representing individual Applications.

Drill down: See C.1. Targeting specific apps by URL

➢ 2. It executes DOM aware scanning

Unlike the capabilities of most general-purpose vulnerability scanners the dedicated DAST tool must
be able to expand, manipulate and crawl the DOM (Document Object Model7) presented by the target
application. This is a necessity for in-depth scanning and comprehensive vulnerability enumeration for

5 https://www.tenable.com/products/nessus
6 There are architectural similarities e.g. in how one can link both a Nessus Scanner and a Web Application Scanner to Tenable Vulnerability
Management, running on very similar appliances and with similar client-to-API polling architecture.

7 https://www.geeksforgeeks.org/html/dom-document-object-model/

https://www.geeksforgeeks.org/html/dom-document-object-model/
https://www.tenable.com/products/nessus

the Application and it’s inner workings.

Drill down: See C.2. DOM interactions and DOM aware scanning

➢ 3. It performs a more active and potentially offensive probing of applications

Be aware of the DAST tool’s potential offensiveness given it’s various configuration options. Some
categories of tests, such as inquisitive injection and XSS tests on custom code bases cannot be
performed without attempting to actually inject data.

Drill down: See C.3. Active Probing techniques

➢ 4. It’s Credentialed scan support needs to be understood in the context of each application

Credentialed scanning of a web application UI is a vastly different enterprise than credentialed
scanning of a host, a database, or even an API. It is by nature an abusive practice and feasible methods
to achieve successful credentialed scan coverage will vary depending on the target site architecture.

Drill down: See C.4. Credentialed scanning with a DAST tool

➢ 5. It’s scan cycle benefits from being coordinated with the SDLC (Software Development
Life Cycle8) [if possible] rather than merely the enterprise patch management cycle

In those cases when we employ DAST as a response to in-house development, we want to optimize the
way to feed back the results to the Dev function, rather than merely reporting to the general patch
management function.

Drill down: See C.5. Ideal Scan cycle implementation may differ

➢ 6. As a product it has a more Specialized focus

Investment in a DAST tool will build on top of your vulnerability management stack and contribute
with a focus on web app security that other scanning tools will not match.

Drill down: See C.6. Specialized Focus: Vast framework and library recognition

8 https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/

Common program considerations
Some typical considerations tend to appear when strengthening the Web Application aspect of a
Vulnerability Management program. Many of these become particularly obvious in large organizations,
where the Vulnerability Management function must systematically discover and catalog thousands of
assets of various types, many of those with web interfaces. And prioritize not only remediation efforts
but also the actual assessment types (Scan types and cadences) and their scheduling across diverse web
assets and other assets. In this process we need to distinguish the assets where Dynamic Web
Application Scanning is actually motivated and essential.

Important questions to ask regarding internal processes and overarching business circumstances
affecting the resulting operations, will include:

1. Do we build Applications in-house?
◦ In that case, how are development teams integrating DAST workflows? – As isolated

DevOps processes or as federated within the Enterprise Vulnerability Management
program?

◦ Do we have access to test environments?
2. What protocols, compliance requirements and SLAs govern the assessment of externally

developed web applications and APIs?
3. Is the Vulnerability management function tasked with prioritizing how a DAST tool license is

utilized, i.e. what applications to scan? Or is the utilization scope of the DAST investment given
to the Vulnerability Management team as a premise up front, with a list of target systems?
◦ In the case of prioritization, does the vulnerability Management function have (and are able

to maintain) a reliable catalog of exposed applications with web interfaces?
4. Do we have permission for running the scans we need to run?

For lager organizations needing to streamline processes and practices while managing vast numbers of
digital assets these questions usually require a bit more attention. When the above questions have been
explored, next we will look at 3 important operational aspects that we will need to resolve and some
guidance on how to tackle them.

Operational aspects to resolve

While the relevance of Application Prioritization and Application Discovery may depend on
organizational context (usually being more pressing in larger organizations), Scan Depth and caution
remains a more universal consideration for all vulnerability management programs using DAST.

• Application prioritization

• Scan Depth and caution

• Large environment application discovery

Application prioritization

In those situations where the Vulnerability Management function has a large inventory of web
interfaces and is tasked with prioritizing which ones to target for web application Scanning (and many
times to allocate a DAST tool license), here are some dimensions that can be relevant in such a
prioritization process.
We will choose to look at the 4 dimensions:

• Degree of customization
• Exposure
• Backend sensitivity
• Duty of Assessment

Starting on the next page with the very important Degree of customization i.e. the answer to the
question: “To what extent does the app build on a custom code base?” Some organizations will indeed
use this criterion exclusively (limiting the scope to a set of self-developed apps only) others will see the
need to weigh in other dimensions in the prioritization as well, e.g. the remaining 3 above.
It’s not difficult to come up with yet more candidate dimensions to include, they could be e.g.

→ Hosting: Part of a SaaS package – Contracted – In-house (on-prem or IaaS)
→ Liability: What is the liability if compromised

Degree of customization

The degree of customization is a very important facet if we are tasked with prioritizing usage of a
DAST investment among a large set of web interfaces. We need to be able to estimate this degree
accurately. To do this in a consistent way can be a challenge when we have to deal with a large number
of detected web application interfaces (maybe in the hundreds) in larger corporate environment. Those
application interfaces are often distributed on a wide range spanning from SaaS9 interfaces to
homegrown heavily customized web applications.

We can do the following classification, where the further down on the scale a web interface gets placed,
the more imperative it is to have it scanned in-depth.

Web application customization spectrum

Customization of: → Deployment
configuration /
Hosting
environment /
Update
management

Contributed
modules

Application
Logic

Web
Framework
internals

1 Off-the-Shelf SaaS

2 Configured Commercial
Products X

3 Extended Platform Solutions X X
4 Framework-Based Custom

Applications X X X
5 Framework-Less Custom and

Legacy Applications X X X X

The classes 5, 4 and 3 are usually the ones prioritized for being scanned with a DAST tool.

Drill down:

We elaborate further on this classification schema in Appendix B. Schema for classification: Web
Application Customization Spectrum where we describe the classes from 1-5 and list a few typical
examples of each.

9 Software as a Service, see e.g. https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas

Exposure

Another common prioritization criterion is Exposure. How exposed is the web application interface, is
it well protected in limited internal network environments only? Or is it exposed world wide on a
public IP? To what extent is the access restricted with components and configurations such as Access
portals, WAFs, Federated logins, IP Restrictions and ACLs.

Limited Internal exposure Intranet, Extranet or wide site-to-
site exposure

World-wide external (public)
exposure.

Backend Sensitivity

To what extent is the Backend sensitive, as a point of lateral movement, a point of data corruption or
leak, a point of malware deployment, etc.

Lower extreme of backend sensitivity Higher extreme of backend sensitivity

Static web page with non sensitive information Mission critical system or integration, highly
business critical data, highly sensitive data.

Duty of Assessment

To what extent is the Vulnerability Management function the accountable owner of the Web
Application Scanning? Is it an overlapping duty with other functions (as described in the Venn diagram
at section Dynamic Web Application Scanning – The duty of whom?).

Other function(s) tasked with asssessment Exclusively Vuln Mgmt

There are other assessment functions in the
organization responsible for DAST, such as
SDLC aligned teams.

The Vulnerability Management is the solely
accountable function within the organization,
tasked with performing DAST scans on web
applications.

Scan Depth and caution

When tasked with scanning a set of web applications, for each of those we need to decide on the scan
depth and caution.

Different dimensions of scan depth:
- Are we crawling10 the app or scanning a fixed select number of internal paths?
- Are we running credentialed scans?
- Are we scanning full-blown with exhaustive assessments/plugins or using a more cautious approach?
- Are we scanning production environment, test only or both

As discussed in the section Active Probing techniques: Offensiveness the DAST tool will typically be
configurable into a wide spectrum of different kinds of scans ranging from a very simple and quick
request of the target site, to a potentially offensive crawling scan that can go on for hours.

Drill down:

What can be a systematic way to
define our Exhaustive vs. Non-
destructive Scans?

What would a more Cautious vs. a
more Offensive approach look like?

In Appendix A. Schema for
classification: Scan depth and caution
we define a method for classifying
scan depth and caution In 5 different
levels, ranging from Cautious to
Offensive.

The concept is to provide a structured
set of definitions where a large
organization can define it’s general
approach for both Test- and
Production environments and then roll
out this approach in a systematic way.

Figure 2: Depiction of a common middle-ground
and default approach in web application
scanning. Avoiding to scan offensively with
credentials.

Large environment application discovery

In some scenarios the license for Web Application Scanning is purchased for specific purpose. In
others, the Vulnerability Management function may be tasked with listing and maintaining the
inventory of web application interfaces in order to proceed with prioritizing which applications to scan.
In large environments we can use tools such as:

Network scanning tools (Nessus Discovery Scans and similar) – Filter cumulative scan data e.g. with
Common web application ports and Web application detection plugins to aggregate lists of web
application interfaces.

For external (public DNS and IP surface) you can utilize tools crawling public registries of DNS
and ASN (Anonymous System Numbers) as well as services utilizing web spiders to collect
information on exposed web interfaces.
Using tools like this, we can often enumerate many hundreds of web application interfaces in larger
organization’s public IP inventories, expanded from a handful of subdomains. However, scanning all
discovered web interfaces with a DAST is typically not practical. Hence, in those situations the next
step will be to prioritize or triage the discovered web application interfaces e.g. according to the
previous section Application prioritization.

Tenable implementation
Implement organization-wide Discovery scanning
https://docs.tenable.com/vulnerability-management/Content/Scans/DiscoveryAssessmentScans.htm
External enumeration with ASM (Attack Surface Management) can be used additionally to map up
the inventory from the organization’s public footprint.
https://www.tenable.com/products/attack-surface-management
From both of these sources lists of web interfaces can be extracted

© 2025 Sven Berglund. All rights reserved.
If you wish to republish this material, please provide
attribution and a referral link to the original article at
https://certerion.com.

https://www.tenable.com/products/attack-surface-management
https://docs.tenable.com/vulnerability-management/Content/Scans/DiscoveryAssessmentScans.htm
https://certerion.com/

Appendices

A. Schema for classification: Scan depth and caution

In order to define a systematic approach for a Vulnerability Management function, in terms of what
Scan Depth and Caution to implement with your DAST tool, we will define a classification of 5
different levels, ranging from Cautious to Offensive.

Let’s start by defining 3 conceptual classes of web application scans:

“Quick and shallow” – A non crawling10 shallow scan that does not impact the target
site any more than requesting the URL in a browser.
This type of scan can do some basic assessment of TLS/SSL configuration, Certificates
and Http Headers and will never have any negative impact on a production site.

“Non-Destructive” – A more extensive scan, potentially crawling the site. Avoids
assessments of type injection tests, fuzzing and offensive XSS tests.
It can still be very revealing and typically run analyses of used frameworks, referenced
libraries and dependencies. Such as assessments of the type discussed in section C.6.
Specialized Focus: Vast framework and library recognition

“Exhaustive” – A scan with all features enabled, including such more offensive active
tests that can impact the state of the application, create or corrupt persisted data.
See discussion in sections: C.3. Active Probing techniques , Active Probing techniques:
Offensiveness

 Note that due to the risk of inadvertent DOS effects we might want to schedule even a Non-
destructive scan nightly or at least during off-peak-hours - if launching it against production
environments. For a Quick and Shallow scan, by definition we need not to worry about any effects on
target sites.

Tenable implementation
Predefined scan types:
https://docs.tenable.com/web-app-scanning/Content/WAS/Scans/ScanTypes.htm
Templates:
https://docs.tenable.com/web-app-scanning/Content/WAS/Scans/ScannerTemplates.htm
(The plain “Scan” template by default is an exhaustive scan with every plugin enabled, however it is

10 We use the term “crawling” in the meaning of extracting, indexing and following internal http links when scanning a web application. See e.g.
https://www.techtarget.com/whatis/definition/crawler

https://docs.tenable.com/web-app-scanning/Content/WAS/Scans/ScannerTemplates.htm
https://docs.tenable.com/web-app-scanning/Content/WAS/Scans/ScanTypes.htm
https://www.techtarget.com/whatis/definition/crawler

also the most configurable with all settings available)
https://www.tenable.com/plugins/was/families

Remark: If you need to craft a non-destructive scan with support for credentials, then you might
have to start with the plain “Scan” template and disable a number of plugin families, see for
example what has been left out from the “Basic” scan configuration among the predefined types.

See also resources like this:
https://www.youtube.com/watch?v=vo89x18JrzE&t=275s

The core principle is that the middle ground (Labeled as the “Confident” approach on
the next page) usually is a good default level with a balance between caution and
offensiveness. However, for test environments you might want to move down in the
hierarchy towards a more Offensive approach. And for prod environments you might
have to to move upwards towards a Cautious approach.

https://www.youtube.com/watch?v=vo89x18JrzE&t=275s
https://www.tenable.com/plugins/was/families

5 approaches to scanning our web app environments with a DAST tool

Cautious approach

Non-Credentialed surface
(Optionally)
Quick and Shallow

Credentialed surface

No scanning

Moderate approach

Non-Credentialed surface

Non-Destructive

Credentialed surface
(Optionally)
Non-Destructive

Confident approach

Non-Credentialed surface

Exhaustive

Credentialed surface
(Optionally)
Non-Destructive

Intrepid approach

Non-Credentialed surface

Exhaustive

Credentialed surface
Exhaustive
with explicit element exclusions

Offensive approach

Non-Credentialed surface

Exhaustive

Credentialed surface

Exhaustive

The cautious approach is to do no scanning at all on our production
environments, or to allow only a very light and superficial
assessment like Quick and Shallow as described above.
For in-house developed apps where we have access to scanning a test
environment more thoroughly, such a very limited scanning of a
production environment need not be a big issue.

In many scenarios, for example when we don’t have access to test
environments, we want to do more than Quick and Shallow scans on
our production environments. For that purpose it is common to
configure and run a Non-Destructive scan configuration that is still
as revealing as possible.

A more intrepid approach to data- and state sensitive
environments is to scan even the Credentialed surface with an
Exhaustive scan, in which we just make targeted and explicit
exclusions to avoid particular Web forms, DOM elements, API
endpoints or URL Paths, where we know that the site is
vulnerable to offensive tests.
Note that this approach requires us to get notified beforehand if a
new release of the app contains new paths, DOM elements or
internal referenced APIs that can cause data corruption or state-
change when scanned.

To offensively scan everything with an Exhaustive scan,
including the Credentialed surface without discretion, is usually
an option only for test environments. And sometimes not even
feasible for test environments. In case we need to share the
environment with data dependent acceptance or release testing or
if data re-staging is not easily done, then we can consider the
Intrepid approach instead.

If we take at face value our confidence in the target application
and it’s hosting environment, we rely on proper Capcha
protection and such mechanisms that protects exposed surface
from any state-altering - then we might scan even production or
state-sensitive test environments with the full-blown Exhaustive
feature set. Launching active probing for injection testing,
fuzzing, active XSS tests, etc.
To be clear this treatment is something any production site
should hold up to, on it’s non-credentialed surface - certainly any
internet exposed site. The question is just whether we want to
validate this “boldly” by our own scans on the production
environment (or if we leave it for someone else to do it [!]).
In some scenarios we can combine this with running a Non-
destructive scan with credentials.

B. Schema for classification: Web Application Customization
Spectrum
A classification schema (1-5) for the degree of customization of an application with web interface,
detected externally or internally and pertaining to any corporate environment.

Web App Customization Spectrum

1. Off-the-Shelf SaaS

Web interfaces for fully managed third-party SaaS solutions with standardized functionality and
limited configuration options.
Examples: Microsoft 365 (Outlook Web, SharePoint Online), Salesforce, Workday, Google
Workspace, Slack, Zoom

2. Configured Commercial Products

Commercially licensed software products deployed in-house or hosted by third parties, featuring
organization-specific configuration and data but no custom codebase.
Examples: SAP ERP systems, Oracle E-Business Suite, Microsoft Dynamics, ServiceNow
(standard implementation), Adobe Experience Manager (basic setup)
Admin interfaces on deployed appliances can also be regarded as a large subcategory under this class.

Customization of:
deployment configuration, hosting, update management.

3. Extended Platform Solutions

Pre-built platforms or frameworks extended through plugins, modules, or configurations that
blend standard functionality with custom components.
Examples: Extendable CMS systems such as WordPress, Drupal, Joomla with custom
themes/plugins, Magento, Shopify Plus with custom extensions, Salesforce with custom or
community contributed Lightning components.

Customization of:
Contributed modules with limited custom application logic

4. Framework-Based Custom Applications

Purpose-built applications developed in-house or by contractors using established, up-to-date, and
actively maintained development frameworks and following standard software development
lifecycle processes.
Examples: Applications built on Spring Boot, .NET Core, Django, Ruby on Rails,

React/Angular/Vue with backend APIs, Laravel PHP applications

Customization of:
All application logic, implemented with frameworks and supported by framework security updates.

5. Framework-Less Custom and Legacy Apps

Applications with web interfaces developed with bare-bone coding or based on no-longer-maintained
frameworks.
Examples: Applications using raw servlet APIs without frameworks, custom HTTP listeners,
bespoke applications with web interfaces added as afterthoughts, inherited or custom built data
processing tools with primitive archaic web UIs.

Customization of:
All application logic - and without support from framework security updates.
May also be built with custom request handling, request dispatch logic and session handling.
Absence of active framework support will lead to greater need for custom coded data validation,
sanitization and escape routines as well as maintenance of the underlying http framework mechanics.

C. Expanding on Web App Scanning vs. Network Vulnerability
scanning

This section examines some of the important unique capabilities that a dedicated DAST tool adds to a
Vulnerability Management program. We will highlight key characteristics of DAST and address the
specific gaps it fills beyond traditional host-based vulnerability scanning with tools like Nessus.

C.1. Targeting specific apps by URL

Whereas Nessus and other broader vulnerability scanners may potentially scan all exposed servicesii (if
you allow it to) on an IP or against a range of IPs, a web application scan will typically target a single
URL instead (or a limited enumeration of URLs).
For a certain host we fix not only the protocol (https) and hostname/IP, but also the port, the path and
optionally query parameters to target a specific application.

Figure 3:
1. General Network Vulnerability scan “spraying” an IP on all ports and services
looping over: IP – Ports (0-65k) – all detected protocols.
2. The Web application Scanner (DAST). Locking in by: IP – Port (fixed) – Web
Server – [Path(fixed), Optionally also: Query parameters and Query anchor] –
Precisely targeted Web application

C.2. DOM interactions and DOM aware scanning

Modern web application vulnerability scanning requires deep DOM (Document Object Model)
interpretation capabilitiesiii to effectively analyze JavaScript-heavy applications, unlike traditional or
more general-purpose scanners that may examine HTTP headers, SSL/TLS configuration and possibly
some HTML/JS constructs such as more easily accessible inclusions and dependencies.
The dedicated web application scanner must build and maintain an in-memory representation of the
web application’s state by executing the JavaScript code, similar to how a browser renders a Single
Page Application (SPA). While crawling the application, it must track DOM mutations and state
changes, identifying interactive elements and potential attack surfaces that only become visible after
JavaScript execution.

Figure 4: Traditional or general-purpose vulnerability scanners can usually detect basic security
issues through TLS-level, HTTP-level and to varying extent HTML-level analysis but lack the
sophisticated DOM building and parsing needed for comprehensive testing of modern web
applications.

C.3. Active Probing techniques

In the below and throughout this document we have used the terms Active vs Passive Probing to specify assessment
methods that actively submits data into detected endpoints, in order to validate alterations in an application’s state and
flaws in it’s responses. We avoid the frequently used term Passive Scanning, since this term often has a different
meaning in the context of Vulnerability Management (as in Passive Vulnerability Scanners11).

More generalized scanning tools typically have some more passive probing techniques for Web
Interfaces. They request the application index page and referred resources, evaluate TLS security
posture, http headers and to varying extent html constructs and inclusions. They might even have some
capabilities for crawling the application.

Active probing techniques involve launching test sequences with web fuzzing, where invalid,
malformed, or unexpected inputs are systematically injected into the application to identify security
vulnerabilities in both frontend and backend implementations12. This process specifically targets
input/output handling mechanisms, including validation, sanitization, and escaping routines, to detect
potential injection flaws and cross-site scripting (XSS) vulnerabilities.

Particularly important for in-house developed applications / Custom codebases

Active probing techniques becomes particularly critical for applications with
extensive custom code and in-house implementations, as these unique codebases
often contain application-specific vulnerabilities that other standard testing techniques
(such as those based on framework and library version recognition) will miss.

The presence of custom codebase is also one of the key natural prioritization criteria (as discussed in
section Application prioritization).
Since the more Active Probing techniques also tend to be the more offensive ones (see: Active
Probing techniques: Offensiveness), this emphasizes the importance of access to test environments.

It can be tempting to equate Active or Offensive Web Application testing as analogous to usage of state-
changing HTTP methods such as POST, PUT, DELETE (as opposed to “reading” or “safe” methods
like GET and HEAD)13. However this would be an oversimplification only valid in an idealized and
non-adversarial scenario, since a DAST tool (and other abusive clients) can certainly embed destructive
payloads also in GET parameters or headers. True offensiveness depends on payload intent so refer to
vendor recommendations and guidelines to understand what scan configurations are generally safer
(e.g. when scanning production environments) and what configurations, modes, or settings will be
more Active/Offensive. See also D: Unpacking Active vs. Passive probing.

11 https://attaxion.com/blog/active-and-passive-vulnerability-scanning-what-is-the-difference/
https://www.tenable.com/solution-briefs/nessus-network-monitor
12 https://www.techtarget.com/searchsecurity/tip/Web-fuzzing-Everything-you-need-to-know
https://www.packetlabs.net/posts/what-is-fuzzing/
13 RFC 7231 explicitly warns against state-changing GET requests, yet many legacy APIs violate this standard.
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1. And of course, from an adversary perspective such standards are to be violated.

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1
https://www.packetlabs.net/posts/what-is-fuzzing/
https://www.techtarget.com/searchsecurity/tip/Web-fuzzing-Everything-you-need-to-know
https://www.tenable.com/solution-briefs/nessus-network-monitor
https://attaxion.com/blog/active-and-passive-vulnerability-scanning-what-is-the-difference/

Active Probing techniques: Offensiveness

Exhaustive scans with active probing or exploitation testing should be conducted in a controlled
manner that minimizes risk to business operations.

Running comprehensive DAST scans in production during business hours presents significant risks:

• Exposing or corrupting production data. DAST tests that manipulate data to check application
behavior could also inadvertently expose or corrupt sensitive production data.

• Creating garbage data. Form submission by the scan can create garbage in databases and
trigger emails by submitting contact forms etc. This is of course particularly true for
credentialed Web Applications scans since we usually expect our forms to be either protected
with login or with capcha.

• Inadvertent DOS effects. Active scanning can overwhelm servers with requests and impact
legitimate user experiences. Even if deliberate DOS or load testing is not the purpose, an
extensive web application scan can have such a side effect, particularly of course on not well
scaled environments.
Remark: Not only active and offensive probing can have inadvertent DOS effects. For any scan
that is crawling the target site and launching a high volume of requests with high concurrency
this can be an issue to look out for (can be more prone to appear when scanning internal
environments, deployed in more basic infrastructures).

A competent DAST tool typically has a configurable spectrum of scan configuration options where the
most quick and shallow scans are no more intrusive than loading the site in a browser, and the most
extensive and deep scans can go on for hours, crawling12 the target site and submitting thousands of
requests, may times unsafe ones.

Some good practicesiv are:

• Testing in a staging/QA environment first before moving to production.
• Starting with smaller, less intrusive scans before scaling to more comprehensive testing.
• Using rate limiting and throttling to prevent overwhelming the servers with too many requests.
• When production testing is implemented, it should be carefully tailored and scheduled during

off-hours to minimize business impact. An exception from this rule of caution can be the most
quick and shallow scans (such scans that do not submit any data and do not extensively crawl
the application).

C.4. Credentialed scanning with a DAST tool

Increasing surface coverage rather than extending the scope of protocols and
checks

An important part of the DAST tool feature set is the ability to implement credentialed scanning. There
are however some key differences in how to look at credentialed scans of web applications versus
credentialed host scans.

When conducting a credentialed network
scan with a product such as Nessus, giving
the scan credentialed access will open up
new protocols and internal APIs such as
WMI, Windows Registry, File system,
Linux Package managers, etc. This will
enable an additional set of vulnerability
plugins or assessments to execute (link) as
compared to running the scan without
credentials.

A credentialed scan against a web
application on the other hand, will not
typically enable other plugins or
vulnerability checks to execute, rather it
will increase the surface coverage with
the same set of plugins or checks.
We expect application admin, CRUD
interfaces and sensitive data to be
behind credentialed access, but this is by
convention and not by hard protocol
restrictions. Ultimately, this is up to the
designer of the web application.

Toolkit rather than ascertained feature support

In traditional network scanning, to enable machine access to a host OS, traditional service accounts can
be used. Login mechanisms such as SSH, SMB and SNMP are well suited for automated credentialed
access to be established. The scanner implementation does not need to invent the wheel or come up
with hacks in order to establish a remote session.

For a web application however, if the developer has intended to enable machine login for
administrative or integration purposes, then the method for this enablement is to expose an API. And
API scanning can certainly be included in your web application scans.
Mere API access however, even if available, does not satisfy the access requirement in order to do a
full Web UI vulnerability assessment. Instead we can make the scanner mimic an interactive user
session and attempt to login via the user interface. This is abusive by nature, as the web UI is not
intended to support this purpose but on the contrary it may have mechanisms attempting to obstruct and
impede replayed and automated logins. This poses a challenge to the DAST tool vendor as well as the
user. A toolkit is hence provided to overcome this, and that toolkit often contains several different
methods to establish and maintain an authenticated session. Thus, to implement credentialed web
application scanning often becomes a process of trial and error.

In the end there is no guarantee for credentialed access without manipulation of the site’s
configuration. If credentialed Web UI scanning is a hard requirement, this may ultimately
lead to the necessity to deploy the app with special configuration in a test environment,
where certain login and session protection mechanisms can be disabled for the purpose of
enabling credentialed scanning.

A flow-chart like procedure for implementing credentialed scanning can be built with steps like this:

1. ASSERT IF: Login is supported on http level [Basic, NTLM, Kerberos]
2. IF NOT – Check if automated login form submission can be done
3. IF NOT – Check if a login recording-and-replay can be implemented (typically with

Selenium script)
4. IF NONE of the above OR IF MFA – Check if Session hijacking (Cookie theft) can be

implemented
5. IF NONE of the above approaches work – Then work with the developers – special

deployment configuration for testing might be necessary.

Ultimately, necessary disablement to make possible credentialed scanning of a test environment can be:

• To remove MFA
• To allow permanent or long-lasting sessions
• To disable mechanisms for identifying and denying suspicious clients/user agents
• To disable mechanisms for identifying and killing shared sessions between user agents
• To allow-list user-agent/scanner IPs

C.5. Ideal Scan cycle implementation may differ

Universal network and host-based vulnerability scans are typically scheduled in regular scan
intervals — such as daily, weekly, or bi-weekly — Sometimes with critical systems scanned more
frequently14. These scheduled scans can be coordinated with other operational functions, particularly
Patch Management cycles, and may be aligned with calendars such as Microsoft's Patch Tuesday
release calendar (occurring on the second Tuesday of each month)15. Some teams implement flexible
scheduling that triggers immediate scans when significant system changes occur (builds, installations,
deployments, etc.) or when alerted on new emerging threats.

Web application scans, which can vary in depth and intensity, can be incorporated into
the regular scheduled scan cycle of the Vulnerability Management.
However, when implementing in-depth DAST scanning in response to in-house
application development, then these scans are ideally coordinated with the development
team's release cycle16.

This approach allows for thorough scanning of release candidates in test or staging environments
before approval. Optionally or additionally, build pipelines can be configured to automatically trigger
scans of new application builds, aligning the security testing with the development process17.

14 Best practices for creating effective scan schedules in Invicti Enterprise https://www.invicti.com/support/scheduled-scans-best-practices/
Best Practices for Vulnerability Scanning - Scytale https://scytale.ai/resources/best-practices-for-vulnerability-scanning-when-and-how-often-to-perform/
15 6 Steps of Vulnerability Scanning: Best Practices - RedLegg https://www.redlegg.com/blog/6-steps-of-vulnerability-scanning-best-practices
16 What is Dynamic Application Security Testing (DAST) - OpenText https://www.opentext.com/what-is/dast
Continuous Dynamic Application Security Testing (DAST) - Black Duck https://www.blackduck.com/dast.html
17 DAST: Web App & API Vulnerability Scanning - Cobalt https://www.cobalt.io/platform/dast

https://www.cobalt.io/platform/dast
https://www.blackduck.com/dast.html
https://www.opentext.com/what-is/dast
https://www.redlegg.com/blog/6-steps-of-vulnerability-scanning-best-practices
https://scytale.ai/resources/best-practices-for-vulnerability-scanning-when-and-how-often-to-perform/
https://www.invicti.com/support/scheduled-scans-best-practices/

C.6. Specialized Focus: Vast framework and library recognition

Unlike multi-purpose network scanners that offer certain limited web vulnerability detection
capabilities, dedicated DAST tools provide specialization in web app security and a development
roadmap that prioritizes staying up-to-date with vulnerabilities, exploits and detection techniques in the
Web Application landscape.

A big important and usually Non-offensive subset of detection techniques is recognition and version
enumeration among a plethora of web frameworks and included librariesv, and mapping those to known
vulnerabilities. The diversity in the web framework and JS dependency landscape necessitates that
effective DAST tools maintain comprehensive, up-to-date detection capabilities for a plethora of
framework-specific vulnerabilities. One of the value propositions of specialized DAST solutions lies in
this ability.

Because of the product focus with vast framework and library recognition, the
introduction of a DAST tool can provide a significantly increased visibility,
complementing that of your general network scans. Even in those cases where we are
restricted from employing more active probing techniques and we have to resort to
non-destructive scans. That may be e.g. in scenarios when we only scan our production
environments, as a complement to general network scanning on those same hosts.

Tenable implementation
See the largest of the plugin families in the WAS category: Component Vulnerability.
https://www.tenable.com/plugins/was/families?type=was
This plugin family contains identification of a vast range of inclusions, libraries and dependencies,
and keeps up-to-date with their vulnerabilities.

https://www.tenable.com/plugins/was/families?type=was

D: Unpacking Active vs. Passive probing

Like we discussed in C.3. Active Probing techniques and Active Probing techniques: Offensiveness
the distinction between what is Active and not Active is not always clear-cut, it is not as simple as
classifying for example by what http methods are invoked in a test. Various vendors might also use
their own concepts and terminology, such as Non-offensiveness, Non-destructive, Safe Mode, etc.
Also, a functionally non-destructive scan can have a DOS-like impact on a target site, particularly this
may be the case on internally deployed applications, that are not always well dimensioned to handle a
flood of requests.
Conclusively, it may be better to look at this as a sliding scale (more-or-less Active probing) rather than
as a rigid classification where there is a common consensus. We can still attempt to outline some
commonly understood typical traits of Active vs Passive probing in Web Application Scanning:

Active Probing

Active probing involves direct interaction with the application through 18:

- Submitting forms and data to endpoints

- Injecting attack payloads into HTTP requests

- Testing input validation and sanitization

- Fuzzing parameters and API endpoints

- Analyzing application responses to malformed inputs

The key characteristic is that active scanning/probing attempts to identify vulnerabilities by actually
sending potentially malicious requests and analyzing how the application handles them1920.

Passive Probing

Passive probing examines the application without making potentially disruptive requests21:

- Analyzing HTTP headers and security policies

- Evaluating TLS/SSL configuration

- Examining dependencies to standard components and libraries

- Examining exposed tokens or sensitive information

18 https://docs.gitlab.com/ee/user/application_security/dast/browser/
https://www.jc-cybersecurity.co.uk/what-is-web-application-security-testing-and-how-can-it-help

19 DAST browser-based analyzer - GitLab Documentation https://docs.gitlab.com/ee/user/application_security/dast/browser/
20 Vulnerability Scanners: Passive Scanning vs. Active Scanning https://www.zengrc.com/blog/vulnerability-scanners-passive-scanning-vs-active-

scanning/
21 What OWASP ZAP can do, and when to use it - Jit.io https://www.jit.io/resources/owasp-zap

https://www.jit.io/resources/owasp-zap
https://www.zengrc.com/blog/vulnerability-scanners-passive-scanning-vs-active-scanning/
https://www.zengrc.com/blog/vulnerability-scanners-passive-scanning-vs-active-scanning/
https://docs.gitlab.com/ee/user/application_security/dast/browser/
https://www.jc-cybersecurity.co.uk/what-is-web-application-security-testing-and-how-can-it-help
https://docs.gitlab.com/ee/user/application_security/dast/browser/

- Reviewing content security policies

- Inspecting HTML structure and client-side code

Key Distinctions

Impact and Risk:

- Active probing can potentially disrupt services or affect application state2223

- Passive probing is non-intrusive and safe for production environments24

Detection Capabilities:

- Active scanning finds more vulnerabilities but requires careful execution

- Passive scanning is limited to surface-level detectable issues but can run continuously25

Usage Context:

- Active probing is best suited for testing environments where potential disruption is acceptable26

- Passive probing can be safely performed in production, providing continuous monitoring

Both techniques complement each other and are typically used together in comprehensive web
application security testing strategies.

22 Active vs Passive IAST Scanning - Contrast Security https://www.contrastsecurity.com/glossary/active-vs-passive-iast
23 DAST vs Manual Pentesting vs Automated Pentesting: 5 Differences https://www.cycognito.com/learn/application-security/dast-vs-manual-

pentesting-vs-automated-pentesting.php
24 Dynamic Application Security Testing (DAST): How Safe is Your ... https://codenteam.com/dynamic-application-security-testing-dast-how-safe-is-

your-application-in-action/
25 Vulnerability Scanners: Passive Scanning vs. Active Scanning https://www.zengrc.com/blog/vulnerability-scanners-passive-scanning-vs-active-

scanning/
26 Advantages and Disadvantages of Active vs. Passive Scanning in IT ... https://www.infosecurity-magazine.com/opinions/active-passive-scanning/

https://www.infosecurity-magazine.com/opinions/active-passive-scanning/
https://www.zengrc.com/blog/vulnerability-scanners-passive-scanning-vs-active-scanning/
https://www.zengrc.com/blog/vulnerability-scanners-passive-scanning-vs-active-scanning/
https://codenteam.com/dynamic-application-security-testing-dast-how-safe-is-your-application-in-action/
https://codenteam.com/dynamic-application-security-testing-dast-how-safe-is-your-application-in-action/
https://www.cycognito.com/learn/application-security/dast-vs-manual-pentesting-vs-automated-pentesting.php
https://www.cycognito.com/learn/application-security/dast-vs-manual-pentesting-vs-automated-pentesting.php
https://www.contrastsecurity.com/glossary/active-vs-passive-iast

E: Expanding on Common functions and perspectives on Web
Application Scanning

Vulnerability Management

Organizational function or team for Vulnerability Management.

The Vulnerability Management Program encompasses the entire organizational framework for
managing security vulnerabilities across systems, applications, and infrastructure. The program
follows a continuous lifecycle of discovering, prioritizing, assessing, remediating, and validating
security vulnerabilities through systematic processes, supported by policies, tools, and defined roles
and responsibilities.

Dev team (or SDLC aligned QA function)

Scanning of Web Applications as part of a broader spectrum of Application Security practices
employed as part of Application development.

Some typical such practices, that can be more or less owned by the dev team itself are:

• Dynamic Application Security Testing (DAST)
• Static Application Security Testing (SAST)
• Software Component Analysis (SCA)
• Verification of Security Controls and Compliance (OWASP ASVS etc)
• Verification of secure coding practices (manual such as Peer-Review and automated as part of SAST)
• Security Architecture (Design and deployment of all relevant security layers spanning from outer layers such as

WAFs via supporting Identity Federations, PKI,..etc down to inner workings such as User challenge workflows).

External Auditor or Pen Tester

Independent security assessment of web applications as part of structured penetration testing and
security audits.

The process typically includes pre-audit consultation, vulnerability identification, exploitation
attempts, and detailed reporting with actionable recommendations27. Key activities encompass:

• Comprehensive security testing of applications, APIs, and related infrastructure
• Evaluation of security controls and their effectiveness
• Verification of compliance with industry frameworks and regulations
• Discovery and analysis of security weaknesses in design and implementation
• Documentation of findings with detailed remediation strategies28 29

27 https://dsecure.me/en/services/what-is-an-it-security-audit/web-application-security-audit/
28 https://www.blazeinfosec.com/post/web-application-penetration-testing/
29 https://www.dungeondata.com/en/blog/web-application-audit-pentest/

https://www.dungeondata.com/en/blog/web-application-audit-pentest/
https://www.blazeinfosec.com/post/web-application-penetration-testing/
https://dsecure.me/en/services/what-is-an-it-security-audit/web-application-security-audit/

End notes

i References:
https://www.blazeinfosec.com/post/web-application-penetration-testing/
https://www.getastra.com/blog/security-audit/security-audits/

ii We illustrate the general case of port/application mapping with a one-to-many relationship. In typical scenarios,
applications are mapped to ports in a one-to-one relationship. However, multiple applications or processes may
concurrently bind to the same port on the same IP address using the SO_REUSEPORT socket option. This further
highlights the ambiguity regarding which applications or processes are being targeted during a general-purpose network
scan.
References:

[1] Binding two processes on the same port for fun and firewall evasion https://github.com/sghctoma/multipass
[2] SO_REUSEPORT on linux - sockets - Stack Overflow https://stackoverflow.com/questions/3261965/so-reuseport-on-

linux

iii References:
1. [MDN: Introduction to the DOM](https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/

Introduction)
2. [PortSwigger: DOM-based Vulnerabilities](https://portswigger.net/web-security/dom-based)
3. [BrowserStack: DOM in Web Automation](https://www.browserstack.com/guide/dom-in-selenium)

DAST-specific DOM interpretation details: [Acunetix DAST Guide](https://www.acunetix.com/the-ultimate-guide-to-dast/)
and [OWASP Testing Guide](https://www.imf.org/external/pubs/ft/bop/2007/pdf/bpm6.pdf)

iv References on production safety of DAST:
https://www.invicti.com/blog/web-security/how-to-implement-dast-effectively-guide-and-tips/
https://research.aimultiple.com/dast-best-practices/
https://www.blackduck.com/blog/production-safe-dast.html
https://www.reddit.com/r/blueteamsec/comments/gd8c48/q_running_dast_on_production_or_development/
https://qualysec.com/dynamic-application-security-testing/
https://brightsec.com/blog/why-running-dast-in-production-is-not-a-good-idea/

v For instance, the PHP ecosystem boasts a very diverse and extensive array of web frameworks, (even to greater extent
than for Java, Python, C# or Ruby). PHP's landscape is characterized by a very fragmented and varied selection
including Laravel, CodeIgniter, Symfony, Laminas (formerly Zend), Phalcon, CakePHP, and Yii, among others[1][4][7].
Each catering to different development needs, from full-stack solutions to microframeworks. It also includes CMS
platforms such as Drupal, WordPress and Joomla.

Similarly, the JavaScript ecosystem presents a vast and rapidly evolving landscape dominated by frameworks and libraries
such as Angular, React, Vue.js, jQuery, and numerous emerging technologies.

Sources

[1] 11 Best PHP Frameworks For Beginner to Pro Developers - Hostinger https://www.hostinger.com/tutorials/best-php-
framework

[2] Java vs PHP vs Python | What are the differences? - StackShare https://stackshare.io/stackups/java-vs-php-vs-python
[3] PHP vs. Other Frameworks: Choosing the Best for Website ... https://tech.eastsons.com/blog/php-vs-other-frameworks-

choosing-the-best-for-website-development
[4] Top 5 Php Frameworks to be included in the Best of 2025 List https://blog.oloma.dev/top-5-php-frameworks-to-be-

included-in-the-best-of-2025-list-9f56c181514d
[5] PHP vs Python: A Comparison Between the Two Languages - Kinsta https://kinsta.com/blog/php-vs-python/
[6] PHP Frameworks (CodeIgniter, Yii, CakePHP) vs. Django [closed] https://stackoverflow.com/questions/2578540/php-

frameworks-codeigniter-yii-cakephp-vs-django
[7] Los 8 Mejores Frameworks PHP para Desarrolladores Web https://www.hostinger.es/tutoriales/mejores-frameworks-php

https://brightsec.com/blog/why-running-dast-in-production-is-not-a-good-idea/
https://qualysec.com/dynamic-application-security-testing/
https://www.reddit.com/r/blueteamsec/comments/gd8c48/q_running_dast_on_production_or_development/
https://www.blackduck.com/blog/production-safe-dast.html
https://research.aimultiple.com/dast-best-practices/
https://www.invicti.com/blog/web-security/how-to-implement-dast-effectively-guide-and-tips/
https://www.imf.org/external/pubs/ft/bop/2007/pdf/bpm6.pdf
tmp/2025-06-06-snapshot-docs/Acunetix%20DAST%20Guide%5D(https://www.acunetix.com/the-ultimate-guide-to-dast/
https://www.browserstack.com/guide/dom-in-selenium
https://portswigger.net/web-security/dom-based
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://stackoverflow.com/questions/3261965/so-reuseport-on-linux
https://stackoverflow.com/questions/3261965/so-reuseport-on-linux
https://github.com/sghctoma/multipass
https://www.getastra.com/blog/security-audit/security-audits/
https://www.blazeinfosec.com/post/web-application-penetration-testing/

	Incorporating Web Application Scanning into a Vulnerability Management Program: An Operational Guide
	Introduction
	Dynamic Web Application Scanning – The duty of whom?
	Dynamic Web Application Scanning vs. General Network based Vulnerability Scanning
	Common program considerations
	Operational aspects to resolve
	Application prioritization
	Scan Depth and caution
	Large environment application discovery

	Appendices
	A. Schema for classification: Scan depth and caution
	B. Schema for classification: Web Application Customization Spectrum
	C. Expanding on Web App Scanning vs. Network Vulnerability scanning
	C.1. Targeting specific apps by URL
	C.2. DOM interactions and DOM aware scanning
	C.3. Active Probing techniques
	C.4. Credentialed scanning with a DAST tool
	Toolkit rather than ascertained feature support
	C.5. Ideal Scan cycle implementation may differ
	C.6. Specialized Focus: Vast framework and library recognition

	D: Unpacking Active vs. Passive probing
	E: Expanding on Common functions and perspectives on Web Application Scanning

	End notes

